

Material Group		ial	Vc (m/min)	f _n (mn1/rev)														
				ø1.0 -1.9	ø2.0 -2.9	ø3.0 -3.9	ø4.0 -4.9	ø5.0 -5.9	ø6.0 -6.9	ø 7.0 -7.9	ø8.0 -9.9	ø10.0 -11.9	ø12.0 -13.5	ø14.0 -15.5	ø16.0 -17.5	ø18.0 -19.5	ø20.0	
		71 72	140 (80-200)		-	0.20	0.30	0.40	0.50	0.50	0.60	0.60	0.70	0.70	0.80	0.90	1.00	
R		73 74	140 (80-200)		-	0.15	0.20	0.25	0.30	0.30	0.35	0.35	0.40	0.40	0.40	0.40	0.40	

- ▶ For 8xD drills reduce feed rate by 15%
- ▶ For recommended coolant pressure refer to p.191

ν_c - cutting speed (m/min)

To calculate RPM from cutting speed: n = $\frac{v_c \star 1000}{\pi \star \emptyset}$

n - RPM (rev/min)

fn - feed rate (mm/rev)

ø - drill diameter (mm)

To calculate cutting speed from RPM: $v_c = \frac{n * \pi * \emptyset}{1000}$

All recommendations are based on ideal machining conditions. Adjustments may need to be made according to your set-up. The recommendations for speeds, feeds and other parameters presented in this chart are nominal recommendations and should be considered only as good starting points.